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Image classification 
(Google Photos)

DeepMind

Generating fake photos (NVIDIA)
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Recent Progress in Machine 
Learning in High Energy Physics

Better Selection Algorithm 
for energetic top quarks 

Almeida et.al. 1501.05968

Deep Learning for 
Beyond the Standard  

Model signals 
Baldi et.al. 1402.4735 

CaloGAN 
Fast Detector  

Simulation 
Paganini et.al.  

1712.10321
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Focus On  
Classification 

Clear that machine 
learning is better 

at classifying than 
human experts

But can we learn physics 
they are utilizing? 

(e.g. what new 
variables or correlations 

are useful?)  Important for  
theorists and  

experimentalists!

Firebox

Top quark selection 
Almeida et.al. 1501.05968 
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Training  
data

x

y
Deep Neural  

Network Output

In a simple scenario 
can interpret NN 

(e.g. approximates radius)

As scenario 
gets complicated in input 

and feature space  
this is progressively 

more challenging

How many circles 
do you see? 

Coffer Illusion 
A. Norcia
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Existing Technique: Saturation
Adding a high level variable as input  

and seeing if discrimination saturates 
tests if classifier is sensitive to the variable

Baldi et.al. 1402.4735 
High level = invariant masses 

of cascade decay

DN high-level

DN low-level 

DN high+low

So deep NN is aware of Lorentz 
Invariant information without 

knowing special relativity!
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FIG. 2: Histograms of the constructed variables normalized to unity. The top [bottom] panels are before [after] planing the
input events using the invariant mass m. The rapidity of the electron (positron) is specified by y(e�) (y(e+)).

FIG. 3: [Left] Density of events for the planed linear network
output versus z for the toy model presented in Sec. II. [Right]
Density of events for the planed linear network output and
�|y| for the Z0

L model. Both signal and background events
are being plotted. The correlation measure is provided in the
top of each panel. Perfect correlation would imply that the
variable and linear network represent the same information.

Z

0
V model, again indicating the presence of information

beyond the invariant mass. Inspecting the distributions
that have been planed using m, which are plotted
in the lower panels of Fig. 2, reveals the source of
this additional discriminating power. The Z

0
L clearly

manifests di↵erences in the rapidities for the electron and
positron, where the magnitude of the electron rapidity
is usually larger than the magnitude of the positron
rapidity for the Z 0

L. This results from the choice of chiral
couplings and the shape of the parton distribution func-
tions. This suggests a variable �|y| ⌘ |y(e�)| � |y(e+)|
should be a useful discriminator (the more traditional
approach is to utilize asymmetry observables, e.g. the
reviews [27, 28]). This can be further quantified by
computing the correlation between the linear network
response (before the Sigmoid activation) and �|y|, as
shown in the right panel of Fig. 3. A correlation of
0.90 is observed, implying that much of the remaining
information is contained in �|y|. As a comparison, we

also show the equivalent result derived for the toy model
of Sec. II in the left panel of Fig. 3. Since the signal
was linear in z by construction, a perfect correlation is
expected and demonstrated. Performing this test on any
new variables is a powerful and quick method to assess
their performance and test their linearity.

Next we plane the inputs using the full m-�|y| de-
pendence, and train new networks. The results are
provided in the last row of Table III. We see that an AUC
approaching 1/2 is achieved for both the linear and deep
networks. The remaining bits of discriminating power
could be resolved by planing in 3D: (m, y(e+), y(e�)).
This would determine to what extent it is due to physics
as opposed to noise from the histrograming procedure.

IV. Outlook

We explored data planing, a probe of machine learn-
ing algorithms designed to remove features in a given
variable, see also [6]. By iteratively planing training
data, it is possible to remove the machine’s ability
to classify. As a by product, the planed variables
determine combinations of input variables that explain
the machine’s discriminating power. This procedure
can be explored systematically, but is most e�cient in
tandem with physics intuition.

In the future, it would be interesting to examine this
procedure with more realistic training data that includes
initial/final state radiation and detector e↵ects. The
application to more complicated signals should also be
tested. With exotic signals, planing may need to be done
in many dimensions, and perhaps a kernel smoothing
procedure should be applied. Choosing which variables
to plane in will be increasingly challenging in higher
dimensional phase space, as the example of jet images
highlights [6]. Careful treatment of correlations will also
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mass
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III. Application to Particle Physics

This section provides a planing application to a phys-
ical scenario. We extend the Standard Model with a
single particle, a massive vector boson Z

0 that decays
to an electron (e�) positron (e+) pair. This example
was chosen because the best discriminator against the
smoothly falling photon background is the invariant mass
m

2 = (pe+ +pe�)
2, a non-linear combination of the input

four vectors p. Furthermore, depending on how we choose
the helicity structure of the coupling between the Z 0 and
the Standard Model particles, additional discriminating
power beyond invariant mass may be present.

We use a phenomenological parametrization:

L � Z

0
µ

X

f

Qf

⇣
gZ0,Lf�

µ
PLf + gZ0,Rf�

µ
PRf

⌘
, (3)

where f are the Standard Model fermions, Qf is the
electric charge, PL(R) are the left (right) projection op-
erators, gZ0,L(R) is the strength of the coupling between
the left (right) handed fermions and the Z

0. We take
MZ0 = 1 TeV and the width �Z0 = 10 GeV. This model
is excluded by LHC data over a wide parameter space;
we present it here solely as an instructive tool.

We will focus our attention on two cases: Z

0
V with

vector coupling where gZ0L = gZ0R (the same as the
helicity structure of the photon), and Z

0
L with left cou-

plings active and gZ0R = 0. The models are implemented
using FeynRules [25]. The Monte Carlo event generator
MadGraph [26] is used to simulate 106 proton-proton
collisions with an invariant mass between (500, 1500)
GeV for �

⇤, Z

0
V and Z

0
L intermediate states. Using

information contained in p p ! e

+
e

� events, the goal
is to distinguish the Z

0 signal models from the photon
background.

We take the low-level training inputs to be the four-
vectors (E, ~p ) of the e

±. We know that the best
discriminator between signal and background is the
invariant mass. This is the only distinguishing feature
between the Z

0
V and the photon. However, due to the

non-trivial helicity structure of the Z

0
L model, there are

additional features in the high-level variable rapidity,
y ⌘ 1

2 log[(E + pz)/(E � pz)], that distinguish it from
the photon. The distributions of the high-level variables
are shown in the upper panels of Fig. 2.

The results of classifying the Z

0
V against the photon

are shown in Table II. We train the linear and deep
networks on the low-level variables, and again on the low-
level variables plus invariant mass. The deep network
performance is very similar with or without the invariant
mass; following the logic of the saturation approach,
this shows that the low-level deep network is a near
ideal discriminator. For comparison, the low-level linear
network performance is far below that of the deep
network. We infer that non-linear combinations of the
input variables are needed to optimally classify the data.
When invariant mass is added to the linear network, the

resulting performance significantly improves, but it still
does not match the power of the deep networks. One
is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of
Fig. 2 seems to add support. It is also possible that the
linear network aided bym does not perform as well as the
deep network, even though it contains all of the relevant
information, because it can only make a one-sided cut.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.746221(01) 0.988510(98)

3 3 8 0.938967(01) 0.989007(03)

3 8 m 0.50550(29) 0.4942(48)

TABLE II: The AUC output for a variety of input configura-
tions applied to the Z0

V model and the photon background.

However, due to the vector nature of the photon
couplings (and the masslessness of the final state parti-
cles), we know that the only di↵erence between signal
and background should be captured by the invariant
mass of the electron positron pair. To determine the
correct interpretation, we plane signal and background
in invariant mass as shown in the lower row of Fig. 2.
As expected, the photon and the vector Z

0 have nearly
identical distributions up to the noise induced by the
histograming procedure for computing the weights.
In order to quantify if there is information hidden in

any of the other distributions, linear and deep networks
are trained on the planed inputs. The results are shown
in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
so no noticeable discriminating power remains. Since the
planing process removed the invariant mass information,
the networks cannot tell the di↵erence between the
massless and massive vector boson propagators, showing
that mass is in fact the only discriminator.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.763280(05) 0.989353(59)

3 3 8 0.942004(02) 0.989826(10)

3 8 m 0.626648(28) 0.6258(24)

3 8 (m,�|y|) 0.52421(15) 0.5320(25)

TABLE III: The AUC output for a variety of input configu-
rations applied to the Z0

L model and the photon background.
The variable �|y| ⌘ |y(e�)|� |y(e+)|.

Next, we explore the Z 0
L signal model where we expect

additional discriminants to be present. Networks are
trained to distinguish the Z

0
L from the photon, with

results shown in Table III. Initially, we see a similar
pattern as in the previous examples. Note that now the
AUCs are slightly closer to unity as compared to the

Inputs
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networks on the low-level variables, and again on the low-
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performance is very similar with or without the invariant
mass; following the logic of the saturation approach,
this shows that the low-level deep network is a near
ideal discriminator. For comparison, the low-level linear
network performance is far below that of the deep
network. We infer that non-linear combinations of the
input variables are needed to optimally classify the data.
When invariant mass is added to the linear network, the

resulting performance significantly improves, but it still
does not match the power of the deep networks. One
is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of
Fig. 2 seems to add support. It is also possible that the
linear network aided bym does not perform as well as the
deep network, even though it contains all of the relevant
information, because it can only make a one-sided cut.
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in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
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L signal model where we expect
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0
L from the photon, with

results shown in Table III. Initially, we see a similar
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This section provides a planing application to a phys-
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L � Z

0
µ

X

f

Qf

⇣
gZ0,Lf�

µ
PLf + gZ0,Rf�

µ
PRf

⌘
, (3)

where f are the Standard Model fermions, Qf is the
electric charge, PL(R) are the left (right) projection op-
erators, gZ0,L(R) is the strength of the coupling between
the left (right) handed fermions and the Z

0. We take
MZ0 = 1 TeV and the width �Z0 = 10 GeV. This model
is excluded by LHC data over a wide parameter space;
we present it here solely as an instructive tool.

We will focus our attention on two cases: Z

0
V with

vector coupling where gZ0L = gZ0R (the same as the
helicity structure of the photon), and Z

0
L with left cou-

plings active and gZ0R = 0. The models are implemented
using FeynRules [25]. The Monte Carlo event generator
MadGraph [26] is used to simulate 106 proton-proton
collisions with an invariant mass between (500, 1500)
GeV for �

⇤, Z

0
V and Z

0
L intermediate states. Using

information contained in p p ! e

+
e

� events, the goal
is to distinguish the Z

0 signal models from the photon
background.

We take the low-level training inputs to be the four-
vectors (E, ~p ) of the e

±. We know that the best
discriminator between signal and background is the
invariant mass. This is the only distinguishing feature
between the Z

0
V and the photon. However, due to the

non-trivial helicity structure of the Z

0
L model, there are

additional features in the high-level variable rapidity,
y ⌘ 1

2 log[(E + pz)/(E � pz)], that distinguish it from
the photon. The distributions of the high-level variables
are shown in the upper panels of Fig. 2.

The results of classifying the Z

0
V against the photon

are shown in Table II. We train the linear and deep
networks on the low-level variables, and again on the low-
level variables plus invariant mass. The deep network
performance is very similar with or without the invariant
mass; following the logic of the saturation approach,
this shows that the low-level deep network is a near
ideal discriminator. For comparison, the low-level linear
network performance is far below that of the deep
network. We infer that non-linear combinations of the
input variables are needed to optimally classify the data.
When invariant mass is added to the linear network, the

resulting performance significantly improves, but it still
does not match the power of the deep networks. One
is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of
Fig. 2 seems to add support. It is also possible that the
linear network aided bym does not perform as well as the
deep network, even though it contains all of the relevant
information, because it can only make a one-sided cut.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.746221(01) 0.988510(98)

3 3 8 0.938967(01) 0.989007(03)

3 8 m 0.50550(29) 0.4942(48)

TABLE II: The AUC output for a variety of input configura-
tions applied to the Z0

V model and the photon background.

However, due to the vector nature of the photon
couplings (and the masslessness of the final state parti-
cles), we know that the only di↵erence between signal
and background should be captured by the invariant
mass of the electron positron pair. To determine the
correct interpretation, we plane signal and background
in invariant mass as shown in the lower row of Fig. 2.
As expected, the photon and the vector Z

0 have nearly
identical distributions up to the noise induced by the
histograming procedure for computing the weights.
In order to quantify if there is information hidden in

any of the other distributions, linear and deep networks
are trained on the planed inputs. The results are shown
in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
so no noticeable discriminating power remains. Since the
planing process removed the invariant mass information,
the networks cannot tell the di↵erence between the
massless and massive vector boson propagators, showing
that mass is in fact the only discriminator.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.763280(05) 0.989353(59)

3 3 8 0.942004(02) 0.989826(10)

3 8 m 0.626648(28) 0.6258(24)

3 8 (m,�|y|) 0.52421(15) 0.5320(25)

TABLE III: The AUC output for a variety of input configu-
rations applied to the Z0

L model and the photon background.
The variable �|y| ⌘ |y(e�)|� |y(e+)|.

Next, we explore the Z 0
L signal model where we expect

additional discriminants to be present. Networks are
trained to distinguish the Z

0
L from the photon, with

results shown in Table III. Initially, we see a similar
pattern as in the previous examples. Note that now the
AUCs are slightly closer to unity as compared to the
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III. Application to Particle Physics

This section provides a planing application to a phys-
ical scenario. We extend the Standard Model with a
single particle, a massive vector boson Z

0 that decays
to an electron (e�) positron (e+) pair. This example
was chosen because the best discriminator against the
smoothly falling photon background is the invariant mass
m

2 = (pe+ +pe�)
2, a non-linear combination of the input

four vectors p. Furthermore, depending on how we choose
the helicity structure of the coupling between the Z 0 and
the Standard Model particles, additional discriminating
power beyond invariant mass may be present.

We use a phenomenological parametrization:

L � Z

0
µ

X

f

Qf

⇣
gZ0,Lf�

µ
PLf + gZ0,Rf�

µ
PRf

⌘
, (3)

where f are the Standard Model fermions, Qf is the
electric charge, PL(R) are the left (right) projection op-
erators, gZ0,L(R) is the strength of the coupling between
the left (right) handed fermions and the Z

0. We take
MZ0 = 1 TeV and the width �Z0 = 10 GeV. This model
is excluded by LHC data over a wide parameter space;
we present it here solely as an instructive tool.

We will focus our attention on two cases: Z

0
V with

vector coupling where gZ0L = gZ0R (the same as the
helicity structure of the photon), and Z

0
L with left cou-

plings active and gZ0R = 0. The models are implemented
using FeynRules [25]. The Monte Carlo event generator
MadGraph [26] is used to simulate 106 proton-proton
collisions with an invariant mass between (500, 1500)
GeV for �

⇤, Z

0
V and Z

0
L intermediate states. Using

information contained in p p ! e

+
e

� events, the goal
is to distinguish the Z

0 signal models from the photon
background.

We take the low-level training inputs to be the four-
vectors (E, ~p ) of the e

±. We know that the best
discriminator between signal and background is the
invariant mass. This is the only distinguishing feature
between the Z

0
V and the photon. However, due to the

non-trivial helicity structure of the Z

0
L model, there are

additional features in the high-level variable rapidity,
y ⌘ 1

2 log[(E + pz)/(E � pz)], that distinguish it from
the photon. The distributions of the high-level variables
are shown in the upper panels of Fig. 2.

The results of classifying the Z

0
V against the photon

are shown in Table II. We train the linear and deep
networks on the low-level variables, and again on the low-
level variables plus invariant mass. The deep network
performance is very similar with or without the invariant
mass; following the logic of the saturation approach,
this shows that the low-level deep network is a near
ideal discriminator. For comparison, the low-level linear
network performance is far below that of the deep
network. We infer that non-linear combinations of the
input variables are needed to optimally classify the data.
When invariant mass is added to the linear network, the

resulting performance significantly improves, but it still
does not match the power of the deep networks. One
is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of
Fig. 2 seems to add support. It is also possible that the
linear network aided bym does not perform as well as the
deep network, even though it contains all of the relevant
information, because it can only make a one-sided cut.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.746221(01) 0.988510(98)

3 3 8 0.938967(01) 0.989007(03)

3 8 m 0.50550(29) 0.4942(48)

TABLE II: The AUC output for a variety of input configura-
tions applied to the Z0

V model and the photon background.

However, due to the vector nature of the photon
couplings (and the masslessness of the final state parti-
cles), we know that the only di↵erence between signal
and background should be captured by the invariant
mass of the electron positron pair. To determine the
correct interpretation, we plane signal and background
in invariant mass as shown in the lower row of Fig. 2.
As expected, the photon and the vector Z

0 have nearly
identical distributions up to the noise induced by the
histograming procedure for computing the weights.
In order to quantify if there is information hidden in

any of the other distributions, linear and deep networks
are trained on the planed inputs. The results are shown
in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
so no noticeable discriminating power remains. Since the
planing process removed the invariant mass information,
the networks cannot tell the di↵erence between the
massless and massive vector boson propagators, showing
that mass is in fact the only discriminator.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.763280(05) 0.989353(59)

3 3 8 0.942004(02) 0.989826(10)

3 8 m 0.626648(28) 0.6258(24)

3 8 (m,�|y|) 0.52421(15) 0.5320(25)

TABLE III: The AUC output for a variety of input configu-
rations applied to the Z0

L model and the photon background.
The variable �|y| ⌘ |y(e�)|� |y(e+)|.

Next, we explore the Z 0
L signal model where we expect

additional discriminants to be present. Networks are
trained to distinguish the Z

0
L from the photon, with

results shown in Table III. Initially, we see a similar
pattern as in the previous examples. Note that now the
AUCs are slightly closer to unity as compared to the
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III. Application to Particle Physics

This section provides a planing application to a phys-
ical scenario. We extend the Standard Model with a
single particle, a massive vector boson Z

0 that decays
to an electron (e�) positron (e+) pair. This example
was chosen because the best discriminator against the
smoothly falling photon background is the invariant mass
m

2 = (pe+ +pe�)
2, a non-linear combination of the input

four vectors p. Furthermore, depending on how we choose
the helicity structure of the coupling between the Z 0 and
the Standard Model particles, additional discriminating
power beyond invariant mass may be present.

We use a phenomenological parametrization:

L � Z

0
µ

X

f

Qf

⇣
gZ0,Lf�

µ
PLf + gZ0,Rf�

µ
PRf

⌘
, (3)

where f are the Standard Model fermions, Qf is the
electric charge, PL(R) are the left (right) projection op-
erators, gZ0,L(R) is the strength of the coupling between
the left (right) handed fermions and the Z

0. We take
MZ0 = 1 TeV and the width �Z0 = 10 GeV. This model
is excluded by LHC data over a wide parameter space;
we present it here solely as an instructive tool.

We will focus our attention on two cases: Z

0
V with

vector coupling where gZ0L = gZ0R (the same as the
helicity structure of the photon), and Z

0
L with left cou-

plings active and gZ0R = 0. The models are implemented
using FeynRules [25]. The Monte Carlo event generator
MadGraph [26] is used to simulate 106 proton-proton
collisions with an invariant mass between (500, 1500)
GeV for �

⇤, Z

0
V and Z

0
L intermediate states. Using

information contained in p p ! e

+
e

� events, the goal
is to distinguish the Z

0 signal models from the photon
background.

We take the low-level training inputs to be the four-
vectors (E, ~p ) of the e

±. We know that the best
discriminator between signal and background is the
invariant mass. This is the only distinguishing feature
between the Z

0
V and the photon. However, due to the

non-trivial helicity structure of the Z

0
L model, there are

additional features in the high-level variable rapidity,
y ⌘ 1

2 log[(E + pz)/(E � pz)], that distinguish it from
the photon. The distributions of the high-level variables
are shown in the upper panels of Fig. 2.

The results of classifying the Z

0
V against the photon

are shown in Table II. We train the linear and deep
networks on the low-level variables, and again on the low-
level variables plus invariant mass. The deep network
performance is very similar with or without the invariant
mass; following the logic of the saturation approach,
this shows that the low-level deep network is a near
ideal discriminator. For comparison, the low-level linear
network performance is far below that of the deep
network. We infer that non-linear combinations of the
input variables are needed to optimally classify the data.
When invariant mass is added to the linear network, the

resulting performance significantly improves, but it still
does not match the power of the deep networks. One
is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of
Fig. 2 seems to add support. It is also possible that the
linear network aided bym does not perform as well as the
deep network, even though it contains all of the relevant
information, because it can only make a one-sided cut.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.746221(01) 0.988510(98)

3 3 8 0.938967(01) 0.989007(03)

3 8 m 0.50550(29) 0.4942(48)

TABLE II: The AUC output for a variety of input configura-
tions applied to the Z0

V model and the photon background.

However, due to the vector nature of the photon
couplings (and the masslessness of the final state parti-
cles), we know that the only di↵erence between signal
and background should be captured by the invariant
mass of the electron positron pair. To determine the
correct interpretation, we plane signal and background
in invariant mass as shown in the lower row of Fig. 2.
As expected, the photon and the vector Z

0 have nearly
identical distributions up to the noise induced by the
histograming procedure for computing the weights.
In order to quantify if there is information hidden in

any of the other distributions, linear and deep networks
are trained on the planed inputs. The results are shown
in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
so no noticeable discriminating power remains. Since the
planing process removed the invariant mass information,
the networks cannot tell the di↵erence between the
massless and massive vector boson propagators, showing
that mass is in fact the only discriminator.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.763280(05) 0.989353(59)

3 3 8 0.942004(02) 0.989826(10)

3 8 m 0.626648(28) 0.6258(24)

3 8 (m,�|y|) 0.52421(15) 0.5320(25)

TABLE III: The AUC output for a variety of input configu-
rations applied to the Z0

L model and the photon background.
The variable �|y| ⌘ |y(e�)|� |y(e+)|.

Next, we explore the Z 0
L signal model where we expect

additional discriminants to be present. Networks are
trained to distinguish the Z

0
L from the photon, with

results shown in Table III. Initially, we see a similar
pattern as in the previous examples. Note that now the
AUCs are slightly closer to unity as compared to the

Inputs

4

FIG. 2: Histograms of the constructed variables normalized to unity. The top [bottom] panels are before [after] planing the
input events using the invariant mass m. The rapidity of the electron (positron) is specified by y(e�) (y(e+)).

FIG. 3: [Left] Density of events for the planed linear network
output versus z for the toy model presented in Sec. II. [Right]
Density of events for the planed linear network output and
�|y| for the Z0

L model. Both signal and background events
are being plotted. The correlation measure is provided in the
top of each panel. Perfect correlation would imply that the
variable and linear network represent the same information.

Z

0
V model, again indicating the presence of information

beyond the invariant mass. Inspecting the distributions
that have been planed using m, which are plotted
in the lower panels of Fig. 2, reveals the source of
this additional discriminating power. The Z

0
L clearly

manifests di↵erences in the rapidities for the electron and
positron, where the magnitude of the electron rapidity
is usually larger than the magnitude of the positron
rapidity for the Z 0

L. This results from the choice of chiral
couplings and the shape of the parton distribution func-
tions. This suggests a variable �|y| ⌘ |y(e�)| � |y(e+)|
should be a useful discriminator (the more traditional
approach is to utilize asymmetry observables, e.g. the
reviews [27, 28]). This can be further quantified by
computing the correlation between the linear network
response (before the Sigmoid activation) and �|y|, as
shown in the right panel of Fig. 3. A correlation of
0.90 is observed, implying that much of the remaining
information is contained in �|y|. As a comparison, we

also show the equivalent result derived for the toy model
of Sec. II in the left panel of Fig. 3. Since the signal
was linear in z by construction, a perfect correlation is
expected and demonstrated. Performing this test on any
new variables is a powerful and quick method to assess
their performance and test their linearity.

Next we plane the inputs using the full m-�|y| de-
pendence, and train new networks. The results are
provided in the last row of Table III. We see that an AUC
approaching 1/2 is achieved for both the linear and deep
networks. The remaining bits of discriminating power
could be resolved by planing in 3D: (m, y(e+), y(e�)).
This would determine to what extent it is due to physics
as opposed to noise from the histrograming procedure.

IV. Outlook

We explored data planing, a probe of machine learn-
ing algorithms designed to remove features in a given
variable, see also [6]. By iteratively planing training
data, it is possible to remove the machine’s ability
to classify. As a by product, the planed variables
determine combinations of input variables that explain
the machine’s discriminating power. This procedure
can be explored systematically, but is most e�cient in
tandem with physics intuition.

In the future, it would be interesting to examine this
procedure with more realistic training data that includes
initial/final state radiation and detector e↵ects. The
application to more complicated signals should also be
tested. With exotic signals, planing may need to be done
in many dimensions, and perhaps a kernel smoothing
procedure should be applied. Choosing which variables
to plane in will be increasingly challenging in higher
dimensional phase space, as the example of jet images
highlights [6]. Careful treatment of correlations will also

Rapidity difference 
close to linear
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III. Application to Particle Physics

This section provides a planing application to a phys-
ical scenario. We extend the Standard Model with a
single particle, a massive vector boson Z

0 that decays
to an electron (e�) positron (e+) pair. This example
was chosen because the best discriminator against the
smoothly falling photon background is the invariant mass
m

2 = (pe+ +pe�)
2, a non-linear combination of the input

four vectors p. Furthermore, depending on how we choose
the helicity structure of the coupling between the Z 0 and
the Standard Model particles, additional discriminating
power beyond invariant mass may be present.

We use a phenomenological parametrization:

L � Z

0
µ

X

f

Qf

⇣
gZ0,Lf�

µ
PLf + gZ0,Rf�

µ
PRf

⌘
, (3)

where f are the Standard Model fermions, Qf is the
electric charge, PL(R) are the left (right) projection op-
erators, gZ0,L(R) is the strength of the coupling between
the left (right) handed fermions and the Z

0. We take
MZ0 = 1 TeV and the width �Z0 = 10 GeV. This model
is excluded by LHC data over a wide parameter space;
we present it here solely as an instructive tool.

We will focus our attention on two cases: Z

0
V with

vector coupling where gZ0L = gZ0R (the same as the
helicity structure of the photon), and Z

0
L with left cou-

plings active and gZ0R = 0. The models are implemented
using FeynRules [25]. The Monte Carlo event generator
MadGraph [26] is used to simulate 106 proton-proton
collisions with an invariant mass between (500, 1500)
GeV for �

⇤, Z

0
V and Z

0
L intermediate states. Using

information contained in p p ! e

+
e

� events, the goal
is to distinguish the Z

0 signal models from the photon
background.

We take the low-level training inputs to be the four-
vectors (E, ~p ) of the e

±. We know that the best
discriminator between signal and background is the
invariant mass. This is the only distinguishing feature
between the Z

0
V and the photon. However, due to the

non-trivial helicity structure of the Z

0
L model, there are

additional features in the high-level variable rapidity,
y ⌘ 1

2 log[(E + pz)/(E � pz)], that distinguish it from
the photon. The distributions of the high-level variables
are shown in the upper panels of Fig. 2.

The results of classifying the Z

0
V against the photon

are shown in Table II. We train the linear and deep
networks on the low-level variables, and again on the low-
level variables plus invariant mass. The deep network
performance is very similar with or without the invariant
mass; following the logic of the saturation approach,
this shows that the low-level deep network is a near
ideal discriminator. For comparison, the low-level linear
network performance is far below that of the deep
network. We infer that non-linear combinations of the
input variables are needed to optimally classify the data.
When invariant mass is added to the linear network, the

resulting performance significantly improves, but it still
does not match the power of the deep networks. One
is tempted to (falsely) conjecture that there is extra
discriminating power to uncover, and the top row of
Fig. 2 seems to add support. It is also possible that the
linear network aided bym does not perform as well as the
deep network, even though it contains all of the relevant
information, because it can only make a one-sided cut.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.746221(01) 0.988510(98)

3 3 8 0.938967(01) 0.989007(03)

3 8 m 0.50550(29) 0.4942(48)

TABLE II: The AUC output for a variety of input configura-
tions applied to the Z0

V model and the photon background.

However, due to the vector nature of the photon
couplings (and the masslessness of the final state parti-
cles), we know that the only di↵erence between signal
and background should be captured by the invariant
mass of the electron positron pair. To determine the
correct interpretation, we plane signal and background
in invariant mass as shown in the lower row of Fig. 2.
As expected, the photon and the vector Z

0 have nearly
identical distributions up to the noise induced by the
histograming procedure for computing the weights.
In order to quantify if there is information hidden in

any of the other distributions, linear and deep networks
are trained on the planed inputs. The results are shown
in the lower section of Tab. II as measured on the planed
test set. Both networks have an AUC approaching 0.5,
so no noticeable discriminating power remains. Since the
planing process removed the invariant mass information,
the networks cannot tell the di↵erence between the
massless and massive vector boson propagators, showing
that mass is in fact the only discriminator.

(E, ~p ) m Planed Linear AUC Deep AUC

3 8 8 0.763280(05) 0.989353(59)

3 3 8 0.942004(02) 0.989826(10)

3 8 m 0.626648(28) 0.6258(24)

3 8 (m,�|y|) 0.52421(15) 0.5320(25)

TABLE III: The AUC output for a variety of input configu-
rations applied to the Z0

L model and the photon background.
The variable �|y| ⌘ |y(e�)|� |y(e+)|.

Next, we explore the Z 0
L signal model where we expect

additional discriminants to be present. Networks are
trained to distinguish the Z

0
L from the photon, with

results shown in Table III. Initially, we see a similar
pattern as in the previous examples. Note that now the
AUCs are slightly closer to unity as compared to the
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